

September 2024

ForenSeq[®] Imagen Kit Handbook for PrepStation

For Imagen Library Preparation using the PrepStation automation solution

Sample to Insight

Table of Contents

Kit Contents	3
Shipping and Storage	4
Intended Use	5
Safety Information	6
Quality Control	6
Introduction Kit features Opentrons PrepStation Description of protocols	7 8 8 9
Acronyms	11
Equipment and Reagents to Be Supplied by User Equipment Thermal cyclers Consumables	12 12 13 14
Important Notes	15
DNA input recommendations Number of samples Tips and techniques Index adapter sequences	15 15 16 18
Protocol	23
Cleaning the PrepStation Protocol step 1: Amplify and tag targets Protocol step 2: Enrich targets (Post 1 – Enrichment)	23 24 29
Protocol step 3: Purity libraries (Post 2 – Puritication) Protocol step 4: Normalize libraries (Post 3 – Normalization) Protocol step 5: Pool libraries (Post 4 – Pooling)	37 45 56
	01
	64
Ordering Information	65
Document Revision History	66

Kit Contents

F C N	orenSeq Image Catalog number No. of reactions	n Kit			V16000189 96
F	Reagent	Description	Сар	Quantity	Storage temperature (°C)
F	Pre-PCR Box 1				
	FEM	ForenSeq Enzyme Mix	Yellow	8	-25 to -15
	PCR1	PCR1 Reaction Mix	Green	9	-25 to -15
P	Post PCR Box 2				
	HP3	2 N NaOH	Orange	1	-25 to -15
	HSC	Human Sequencing Control	Pink	1	-25 to -15
	LNA1	Library Normalization Additives 1	Clear	1	-25 to -15
	LNS2	Library Normalization Storage Buffer 2	Clear	1	Room temperature*
	LNW1	Library Normalization Wash 1	Clear	2	2-8*
	PCR2	PCR2 Reaction Mix	Purple	2	-25 to -15
	UDI Plate	Unique Dual Index	Clear	1	-25 to -15
P	Post PCR Box 3				
	LNB1	Library Normalization Beads 1	White	1	2–8
	RSB	Resuspension Buffer	Green	1	2–8
	SPB2	Sample Purification Beads 2	Red	1	2–8
P	Pre-PCR Box 4				
	NA24385	NA24385 Positive Amplification Control DNA	Black	1	2–8
	DPME	DNA Primer Mix E	Gray	2	2–8
	DPMF (Geo)	DNA Primer Mix F	Orange	2	2–8

* Shipped at -25°C to -15°C

Shipping and Storage

The ForenSeq Imagen Kit is shipped in 4 boxes. When you receive the kit, promptly store reagents at the indicated temperatures.

- Box 1 is shipped at -25°C to -15°C. Upon receipt, all components in Box 1 should be stored immediately at -25°C to -15°C in a constant-temperature freezer.
- Box 2 is shipped at -25°C to -15°C. Upon receipt, all components in Box 2 should be stored immediately at -25°C to -15°C in a constant-temperature freezer.
- Box 3 is shipped at 2–8°C. Upon receipt, all components in Box 3 should be stored immediately at 2–8°C in a constant-temperature refrigerator.
- Box 4 is shipped at 2–8°C. Upon receipt, all components in Box 4 should be stored immediately at 2–8°C in a constant-temperature refrigerator.

When a reagent has a different storage temperature than most other reagents in the box, you can initially store the reagent at the same temperature as the other reagents (see Post-PCR Box 2 in "Kit Contents", previous section). After first use, store the reagent at the indicated temperature.

Under these conditions, the components are stable until the expiration date. The expiration date for the product is provided on the label and will vary based on the date of manufacture of the kit.

Intended Use

The ForenSeq Imagen Kit is intended for molecular biology applications in forensic, human identity, and paternity testing. This product is not intended for the diagnosis, prevention, or treatment of a disease.

All due care and attention should be exercised in the handling of the products. We recommend that all users of QIAGEN[®] products adhere to the NIH guidelines that have been developed for recombinant DNA experiments, or to other applicable guidelines.

Safety Information

When working with chemicals, always wear a suitable lab coat, disposable gloves, and protective goggles. For more information, please consult the appropriate safety data sheets (SDSs). These are available online in convenient and compact PDF format at **www.qiagen.com/safety**, where you can find, view, and print the SDS for each QIAGEN kit and kit component.

Quality Control

Each lot of ForenSeq Imagen Kits is tested against predetermined specifications to ensure consistent product quality.

Introduction

The ForenSeq[®] Imagen Kit prepares up to 96 paired-end, dual-indexed libraries for sequencing. Each sample is combined with a primer mix that contains a pair of tagged oligos for each target sequence. PCR cycles link the tags to copies of each target, forming DNA templates consisting of the regions of interest flanked by universal primer binding sequences. The tags are then used to attach index adapters and the resulting library is amplified, purified, and pooled for sequencing. The ForenSeq Imagen Kit can be used with the standard PCR1 buffer that is available with the kit or the ForenSeq Enhanced PCR1 Buffer System (ePCR1) that is available as an add-on kit. Additionally, the kit may be used with the PrepStation for automated library preparation, or with a manual library preparation protocol.

This handbook summarizes the protocol for using the ForenSeq Imagen Kit with the standard PCR1 buffer and the PrepStation.

Kit features

The ForenSeq Imagen Kit offers the following features:

- Two concentrated primer mixes, either of which can be used for generation of DNA libraries based on user preferences:
 - DPME Amplifies SNP targets for the prediction of skin, hair, and eye color, also referred to as external visible characteristics (EVC).
 - DPMF (Geo) Amplifies SNP targets for the prediction of EVCs in DPME and biogeographical ancestry (BGA) markers.
- Simultaneous preparation of up to 48 libraries using the PrepStation. Each library is a collection of amplified DNA fragments from one sample.
- Amplification of 55 (DPME primer mix) or 107 (DPMF primer mix) SNPs in one reaction and sequencing of up to 96 libraries in one sequencing run.

Opentrons PrepStation

The Opentrons PrepStation is a high-precision liquid handler that includes preprogrammed protocols to prepare libraries for sequencing. Optimized for use with the MiSeq[®] FGx Sequencing System and QIAGEN's Universal Analysis Software, the PrepStation enables a streamlined, automated workflow for enriching targets and purifying, normalizing, and pooling libraries.

The PrepStation platform consists of an eleven-slot deck layout that includes one designated deck slot for a magnetic module and allocated space for labware waste. Automation protocols are controlled and executed through Opentrons PrepStation application on a networked computer.

Figure 2. PrepStation instrument.

Description of protocols

The following table lists the steps to prepare libraries on the PrepStation including hands-on times, runtimes, and reagents. Safe stopping points are marked between steps.

Note: Runtimes listed below assume a protocol consisting of 48 samples (the maximum number that can be prepared at one time). See "Number of samples" on page 15 for more information.

Step	Hands-on time	Total time	Reagents
Amplify and tag targets*	15 min	3 h 35 min	NA24385, DPME or DPMF, FEM, PCR1
Enrich targets†	10 min	90 min	UDI Adapters, PCR2
Purify libraries [†]	15 min	30 min	80% EtOH, RSP, SPB2
Safe stopping point	-	-	-
Normalize libraries†	30 min	1 h 20 min	HP3, LNA1, LNB1, LNS2, LNW1
Safe stopping point	-	-	-
Pool libraries [†]	10 min	10 min	-
Safe stopping point	-	-	-
Denature and dilute libraries [†]	10 min	10 min	HP3, HSC, HT1

* Pre-PCR

† Post-PCR

Acronyms

Abbreviations	Definition
DPME	DNA Primer Mix E
DPMF	DNA Primer Mix F
gDNA	Genomic DNA
FEM	Enzyme Mix
FSP	ForenSeq Sample Plate
HP3	2 N NaOH
HSC	Human Sequencing Control
HTI	Hybridization Buffer
LNA1	Library Normalization Additives 1
LNB1	Library Normalization Beads 1
LNS2	Library Normalization Storage Buffer 2
LNW1	Library Normalization Wash 1
NA24385	NA24385 Positive Amplification Control DNA
NLP	Normalized Library Plate
NWP	Normalization Working Plate
PBP	Purification Bead Plate
PCR1	PCR1 Reaction Mix
PCR2	PCR2 Reaction Mix
PLP	Purified Library Plate
PNL	Pooled Normalized Libraries
RSB	Resuspension Buffer
SPB2	Sample Purification Beads 2
UDI	Unique Dual Index

Equipment and Reagents to Be Supplied by User

When working with chemicals, always wear a suitable lab coat, disposable gloves, and protective goggles. For more information, consult the appropriate safety data sheets (SDSs) available from the product supplier.

Make sure that you have the following user-supplied consumables and equipment before starting the protocol. These items supplement the library prep reagents and index adapters provided in the kit.

The protocol is optimized and validated using the items listed. Comparable performance is not guaranteed when using alternative consumables and equipment.

Equipment

Equipment	Supplier	Pre-PCR	Post-PCR
20 µL pipettes	General lab supplier	Х	Х
200 µL pipettes	General lab supplier	Х	Х
1000 µL pipettes	General lab supplier	Х	Х
20 µL multichannel pipettes (8-channel)	General lab supplier	Х	Х
200 µL multichannel pipettes (8-channel)	General lab supplier		Х
Benchtop microcentrifuge	General lab supplier	Х	Х
Computer with PrepStation and Opentrons applications installed	Installation and setup supported by Opentrons		Х
Heating system, 96-well, 1.5 mL	General lab supplier		Х
Magnetic module for PrepStation instrument	Opentrons (SKU: 999-00098)		Х
Metal PCR plate adapters	Opentrons (SKU: 999-00028)		Х

Equipment	Supplier	Pre-PCR	Post-PCR
Microplate centrifuge	General lab supplier	Х	Х
P20 8-channel pipette arm (GEN2)*	Opentrons (SKU: 999-00005)		Х
P300 8-channel pipette arm (GEN2)†	Opentrons (SKU: 999-00006)		Х
PrepStation instrument	Opentrons (SKU: 991-00210)		Х
Rubber roller	General lab supplier	Х	Х
Thermal cycler, 96-well with heated lid	See "Thermal cyclers" (below)		Х
Vortexer	General lab supplier	Х	Х
[Optional] 10 µL pipettes	General lab supplier	Х	Х

* Installed on the left side of the PrepStation instrument.

† Installed on the right side of the PrepStation instrument.

Thermal cyclers

The following table lists supported thermal cyclers with recommended settings. If your laboratory has an unlisted thermal cycler, evaluate the thermal cycler before performing the protocol.

Thermal cycler	Temperature mode	Lid temperature
ABI LTI thermal cycler 9700*	9600 emulation	Heated
Bio-Rad	Calculated	Heated, constant at 100°C
Eppendorf Mastercycler Pro S	Gradient S, Simulated Tube	Heated
QIAmplifier 96-well thermal cycler	Standard	Heated, constant at 100°C
Proflex 96-well PCR System	Not applicable	Heated, constant at 105°C
Veriti 96-well thermal cycler	Standard	Heated, constant at 105°C

* Only gold heat blocks are supported

Consumables

Consumable	Supplier
1.5 mL LoBind microcentrifuge tubes	VWR, cat. no. 80077-230
15 mL conical tube	General lab supplier
20 µL barrier pipette tips	General lab supplier
200 µL barrier pipette tips	General lab supplier
20 µL filter tips	Opentrons (SKU: 999-00099)
200 µL filter tips	Opentrons (SKU: 999-00081)
96-well deep well storage plates (midi plates)	Fisher Scientific, part # AB-0765 (individually sealed)
96-well twin.tec PCR plates, semiskirted	One of the following suppliers: • Eppendorf, catalog # 951020303 • VWR, catalog # 89136-706
96-well twin.tec PCR plate, skirted, 150 μL	Eppendorf, catalog # 951020401
Ethyl alcohol, pure	Sigma-Aldrich, catalog # E7023
Microseal 'A' sealing film	Bio-Rad, catalog # MSA5001
Microseal 'B' sealing film, adhesive, optical	Bio-Rad, catalog # MSB1001
MiSeq FGx Reagent Micro Kit	QIAGEN, part # 20021681
Multichannel reagent reservoirs, PVC, disposable	VWR, catalog # 89094-688
Nuclease-free water	General lab supplier
Reagent reservoirs	Corning, catalog # MTS-11-8-C-R-S
RNase/DNase-free 8-tube strips and caps	General lab supplier
Waste bags (for PrepStation waste)	General lab supplier

Important Notes

DNA input recommendations

- Use 1 ng purified human genomic DNA (gDNA) as input. Before starting the protocol, quantify the input using a fluorometric-based method or qPCR and assess quality.
- The kit is compatible with isolated, purified genomic DNA.
- It is not recommended to use FTA card punches with the use of the PrepStation, due to the possibility of the punch preventing PrepStation to efficiently pipette during the Purify Libraries step.

Controls

- Each preparation must include at least one positive amplification control and at least one negative amplification control. If these controls are not included, troubleshooting support is limited.
- The kit includes NA24385 Positive Amplification Control DNA (NA24385) for use as the positive template control and the negative amplification control is nuclease-free water. The protocol includes instructions to prepare each control.

Number of samples

- The PrepStation can prepare libraries in multiples of 8 samples at a time, up to a maximum of 48 samples. This includes any positive and negative amplification controls.
- Up to 96 samples can be pooled for a sequencing run with a MiSeq FGx Reagent Micro Kit as long as no duplicate UDIs are used.

- If planning to pool and sequence 96 samples simultaneously with the use of the PrepStation, it is recommended to use UDI columns 1–6 for the first 48 samples, and use UDI columns 7–12 for the second 48 samples. This involves choosing 1 for the UDI Start Position on the PrepStation application for the first 48 samples, and choosing 7 for the UDI Start Position for the second 48 samples.
- Reference the following table to determine the maximum number of libraries to pool for a run.

Reagent kit	Maximum number of libraries	
MiSeq FGx Reagent Micro Kit	96	

Tips and techniques

Protocol continuity

- Follow the steps in the order indicated using the specified volumes and incubation parameters.
- Unless a safe stopping point is specified, proceed immediately to the next step.

Plate setup

- Create a sample sheet to record the position of each sample, control, and index adapter.
- Reference the sample sheet throughout the protocol to ensure proper plate setup.

Note: The Universal Analysis Software User Guide for ForenSeq Imagen Kit Module (Verogen document # VD2022014) should be referenced.

Preventing cross-contamination

- Set up the Amplify and Tag Targets process in a pre-PCR environment. Perform all other processes in a post-PCR environment.
- When adding or transferring samples, change tips between **each sample**.
- When adding adapters or primers, change tips between **each well**.
- When processing smaller sample batches of fewer than 96 libraries at a time, prevent aerosolization by resealing the utilized, pierced UDI wells with Microseal 'B' adhesive seal. Trim excess seal with scissors.
- Do not apply Microseal 'B' to unused UDI wells as this will impact the integrity of the singleuse pierceable foil.

Sealing the plate

- Apply a microseal to cover the plate and seal with a rubber roller. After each use, discard seals from plates.
- Use Microseal 'A' pressure film for thermal cycling.
- Use Microseal 'B' adhesive film for shaking, centrifuging, and long-term storage. These seals are effective at -40°C to 110°C.

Handling beads

- For optimal performance and yield, confirm that beads are at room temperature before use.
- Vortex beads before use for at least 1 min, and frequently throughout the protocol to resuspend. Resuspended beads are evenly distributed and homogeneous in color.
- Aspirate and dispense beads slowly due to viscosity.

- Do not centrifuge plates and tubes containing beads, except when indicated.
- Do not let beads sit in reservoirs, and do not reuse reservoirs for beads.
- If beads aspirate into pipette tips during supernatant removal, dispense back to the plate on the magnetic stand and wait until the liquid is clear (around 2 min).

Index adapter sequences

The following table lists the 8 bp sequences for the Unique Dual Index (UDI) adapters included in the ForenSeq Imagen Kit. Each adapter combines an Index 1 (i7) and Index 2 (i5) sequence.

• Index 1 adapter:

CAAGCAGAAGACGGCATACGAGAT[i7]GTGACTGGAGTTCCTTGGCACCCGAGAATTCCA

• Index 2 adapter:

/5Biosg/AATGATACGGCGACCACCGAGATCTACAC[i5]ACACTCTTTCCCTACACGACGCTCTTCCGATCT

Index name	Index 1 bases	Index 2 bases	Plate well location
UDI0001	ATCACGAT	AGCGCTAG	A1
UDI0002	CGATGTAT	GATATCGA	A2
UDI0003	TTAGGCAT	CGCAGACG	A3
UDI0004	TGACCAAT	TATGAGTA	A4
UDI0005	ACAGTGAT	AGGTGCGT	A5
UDI0006	GCCAATAT	GAACATAC	A6
UDI0007	CAGATCAT	ACATAGCG	A7
UDI0008	ACTTGAAT	GTGCGATA	A8
UDI0009	GATCAGAT	CCAACAGA	А9
UDI0010	TAGCTTAT	TTGGTGAG	A10

Index name	Index 1 bases	Index 2 bases	Plate well location
UDI0011	GGCTACAT	CGCGGTTC	A11
UDI0012	CTTGTAAT	TATAACCT	A12
UDI0013	AGTCAAAT	AAGGATGA	B1
UDI0014	AGTTCCAT	GGAAGCAG	B2
UDI0015	ATGTCAAT	TCGTGACC	ВЗ
UDI0016	CCGTCCAT	CTACAGTT	B4
UDI0017	GTAGAGAT	ATATTCAC	В5
UDI0018	GTCCGCAT	GCGCCTGT	Вб
UDI0019	GTGAAAAT	ACTCTATG	Β7
UDI0020	GTGGCCAT	GTCTCGCA	B8
UDI0021	GTTTCGAT	AAGACGTC	В9
UDI0022	CGTACGAT	GGAGTACT	B10
UDI0023	GAGTGGAT	ACCGGCCA	B11
UDI0024	GGTAGCAT	GTTAATTG	B12
UDI0025	ACTGATAT	AACCGCGG	C1
UDI0026	ATGAGCAT	GGTTATAA	C2
UDI0027	ΑΤΤΟΟΤΑΤ	CCAAGTCC	C3
UDI0028	CAAAAGAT	TTGGACTT	C4
UDI0029	CAACTAAT	CAGTGGAT	C5
UDI0030	CACCGGAT	TGACAAGC	C6
UDI0031	CACGATAT	CTAGCTTG	C7
UDI0032	CACTCAAT	TCGATCCA	C8
UDI0033	CAGGCGAT	CCTGAACT	С9

Index name	Index 1 bases	Index 2 bases	Plate well location
UDI0034	CATGGCAT	TTCAGGTC	C10
UDI0035	CATTITAT	AGTAGAGA	C11
UDI0036	CCAACAAT	GACGAGAG	C12
UDI0037	CGGAATAT	AGACTTGG	D1
UDI0038	CTAGCTAT	GAGTCCAA	D2
UDI0039	CTATACAT	CTTAAGCC	D3
UDI0040	CTCAGAAT	TCCGGATT	D4
UDI0041	GACGACAT	CTGTATTA	D5
UDI0042	TAATCGAT	TCACGCCG	D6
UDI0043	TACAGCAT	ACTTACAT	D7
UDI0044	ΤΑΤΑΑΤΑΤ	GTCCGTGC	D8
UDI0045	TCATTCAT	AAGGTACC	D9
UDI0046	TCCCGAAT	GGAACGTT	D10
UDI0047	GTTCCAAT	AATTCTGC	D11
UDI0048	ACCTTGGC	GGCCTCAT	D12
UDI0049	ATATCTCG	ATCTTAGT	E1
UDI0050	GCGCTCTA	GCTCCGAC	E2
UDI0051	AACAGGTT	ATACCAAG	E3
UDI0052	GGTGAACC	GCGTTGGA	E4
UDI0053	CAACAATG	CTTCACGG	E5
UDI0054	TGGTGGCA	TCCTGTAA	E6
UDI0055	AGGCAGAG	AGAATGCC	E7
UDI0056	GAATGAGA	GAGGCATT	E8

Index name	Index 1 bases	Index 2 bases	Plate well location
UDI0057	TGCGGCGT	CCTCGGTA	E9
UDI0058	CATAATAC	TTCTAACG	E10
UDI0059	GATCTATC	ATGAGGCT	E11
UDI0060	AGCTCGCT	GCAGAATC	E12
UDI0061	CGGAACTG	CACTACGA	F1
UDI0062	TAAGGTCA	TGTCGTAG	F2
UDI0063	TTGCCTAG	ACCACTTA	F3
UDI0064	CCATTCGA	GTTGTCCG	F4
UDI0065	ACACTAAG	ATCCATAT	F5
UDI0066	GTGTCGGA	GCTTGCGC	F6
UDI0067	TTCCTGTT	AGTATCTT	F7
UDI0068	CCTTCACC	GACGCTCC	F8
UDI0069	GCCACAGG	CATGCCAT	F9
UDI0070	ATTGTGAA	TGCATTGC	F10
UDI0071	ACTCGTGT	ATTGGAAC	F11
UDI0072	GTCTACAC	GCCAAGGT	F12
UDI0073	CAATTAAC	CGAGATAT	G1
UDI0074	TGGCCGGT	TAGAGCGC	G2
UDI0075	AGTACTCC	AACCTGTT	G3
UDI0076	GACGTCTT	GGTTCACC	G4
UDI0077	TGCGAGAC	CATIGIIG	G5
UDI0078	CATAGAGT	TGCCACCA	G6
UDI0079	ACAGGCGC	CTCTGCCT	G7

Index name	Index 1 bases	Index 2 bases	Plate well location
UDI0080	GTGAATAT	TCTCATTC	G8
UDI0081	AACTGTAG	ACGCCGCA	G9
UDI0082	GGTCACGA	GTATTATG	G10
UDI0083	CTGCTTCC	GATAGATC	G11
UDI0084	TCATCCTT	AGCGAGCT	G12
UDI0085	AGGTTATA	CAGTTCCG	H1
UDI0086	GAACCGCG	TGACCTTA	H2
UDI0087	CTCACCAA	CTAGGCAA	H3
UDI0088	TCTGTTGG	TCGAATGG	H4
UDI0089	TATCGCAC	CTTAGTGT	H5
UDI0090	CGCTATGT	TCCGACAC	H6
UDI0091	GTATGTTC	AACAGGAA	H7
UDI0092	ACGCACCT	GGTGAAGG	Н8
UDI0093	ΤΑCTCATA	CCTGTGGC	Н9
UDI0094	CGTCTGCG	TTCACAAT	H10
UDI0095	TCGATATC	ACACGAGT	H11
UDI0096	CTAGCGCT	GTGTAGAC	H12

Protocol

This chapter describes the ForenSeq Imagen protocol with step-by-step instructions to prepare libraries for sequencing using the standard PCR1 buffer on the Opentrons PrepStation. For an overview of the protocol with reagents and durations for each step, see "Description of protocols" on page 9.

Before starting, confirm kit contents and make sure that you have the necessary reagents, consumables, and equipment. For a list of items, see "Equipment and Reagents to Be Supplied by User" on page 12.

Cleaning the PrepStation

To avoid sample-to-sample contamination between protocols, QIAGEN recommends cleaning the PrepStation at the end of each protocol.

Cleaning the PrepStation between protocols

- Remove all labware from the deck. Dispose of consumed labware.
- Empty the trash bin and replace the bag.
- To make sure the deck is clean and free of spills, clean any exposed surfaces on the deck using 70% ethanol and let them dry.

Preventative maintenance of PrepStation

For information about preventative maintenance of PrepStation, refer to **Opentrons OT-2** Liquid Handler Manual.

Protocol step 1: Amplify and tag targets

This process uses an oligonucleotide primer mix with regions specific to the DNA sequences upstream and downstream of SNP targets to tag and amplify the input gDNA.

Consumables

- FEM (ForenSeq Enzyme Mix)
- DPME (DNA Primer Mix E) or DPMF (Geo) (DNA Primer Mix F)
- PCR1 (PCR1 Reaction Mix)
- NA24385 (NA24385 Positive Amplification Control DNA)
- Input gDNA
- Nuclease-free water
- 96-well PCR plate, semi-skirted
- 1.5 mL LoBind microcentrifuge tubes (2)
- Microseal 'A' film
- Optional: RNase/DNase-free 8-tube strip and caps

About reagents

- Use PCR1 for standard samples.
- Do not vortex NA24385, FEM, or input gDNA.
- Prepare fresh dilutions of NA24385 every time.
- For information on DPME and DPMF (geo), see Loci Detected with DPME and DPMF (Geo).

Preparation

1. Prepare the following consumables:

ltem	Storage temperature (°C)	Instructions
NA24385	2–8	Let stand for 30 min to bring to room temperature. Invert 3 times to mix, and then centrifuge briefly.
PCR1	-25 to -15	Thaw at room temperature. Vortex to mix, and then centrifuge briefly.
FEM	-25 to -15	Thaw at room temperature, and then centrifuge briefly. Return to storage immediately after use.
DPME or DPMF (Geo)	2–8	Let stand for 30 min to bring to room temperature. Vortex to mix, and then centrifuge.

- 2. Save the following Imagen PCR1 program on the thermal cycler in the post-amplification area. See Table 1 for lid temperatures and ramp modes.
 - Choose the preheat lid option and set to applicable temperature.
 - 98°C for 3 min
 - 8 cycles of:
 - $^\circ$ 96°C for 45 s
 - ° 80°C for 30 s
 - 54°C for 2 min with applicable ramp mode
 - ° 68°C for 90 s with applicable ramp mode
 - 10 cycles of:
 - $^\circ$ 96°C for 30 s
 - ° 68°C for 3 min, with applicable ramp mode

- 68°C for 10 min
- Hold at 10°C

Table 1. Lid temperature and ramp modes

Thermal cycler	Temperature mode	Lid temperature	Ramp mode	Vessel type
ABI LTI Thermal Cycler 9700	9600 emulation	Heated	8%	Polypropylene plates and tubes
Bio-Rad	Calculated	Heated, constant at 100°C	0.2°C/s	Polypropylene plates and tubes
Eppendorf Mastercycler Pro S	Gradient S, Sim- ulated tube	Heated	2%	Plate
Proflex 96-Well PCR System	Not applicable	Heated, constant at 100°C	0.2°C/s	Polypropylene plates and tubes
QIAamplifier 96-Well Thermal Cycler	Standard	Heated, constant at 100°C	0.1°C/s	Polypropylene plates
Veriti 96-Well Thermal Cycler	Standard	Heated, constant at 105°C	4%	Polypropylene plates and tubes

The Imagen PCR1 program takes approximately 3.5 h and can be run overnight. (The duration for the amplification will depend on the thermal cycler used.)

- 3. Label a new PCR plate FSP for ForenSeq Sample Plate.
- 4. Label a new 1.5 mL tube according to input type.

Input type	Label	
Purified DNA	Master Mix	

Procedure

Purified DNA

- Using nuclease-free water, dilute 1 ng purified DNA input to 0.125 ng/µL. Gently pipette to mix.
- 2. In the Master Mix tube, combine the following volumes. Multiply each volume by the number of samples and add 10% for overage.
 - PCR1 (4.7 µL)
 - DPME or DPMF (2 µL)
 - FEM (0.3 µL)

As an example, for 8 samples, prepare 61.6 μL Master Mix with 41.4 μL PCR1, 2.6 μL FEM, and 17.6 μL DPME or DPMF.

- 3. Pipette to mix, and then cap and centrifuge briefly.
- 4. **Optional**: Evenly distribute the master mix among each well of an 8-tube strip. Use a multichannel pipette to dispense.
- 5. Add 7 µL Master Mix to each sample well of the ForenSeq Sample Plate (FSP).
- 6. In a new 1.5 mL tube, combine the following volumes to dilute NA24385:
 - NA24385 (2 µL)
 - Nuclease-free water (158 µL)
- 7. Cap and gently invert 3 times to mix, and then centrifuge briefly.
- 8. Add 8 μL diluted NA24385 to at least one well of the FSP as a positive amplification control.
- 9. Pipette to mix.

- 10. Add 8 μL nuclease-free water to at least one well of the FSP as a negative amplification control.
- 11. Pipette to mix.
- 12. Add 8 μ L 0.125 ng/ μ L DNA to each well of the FSP.
- 13. Seal and centrifuge for 30 s at $100 \times g$.
- 14. Place on the preprogrammed thermal cycler and run the PCR1 program.
- 15. Unless you are stopping, proceed to "Protocol step 2: Enrich targets (Post 1 Enrichment)".

Safe stopping point

If you are stopping, seal the plate and store at $2-8^{\circ}$ C for up to 2 days. Alternatively, leave the thermal cycler on overnight.

Protocol step 2: Enrich targets (Post 1 - Enrichment)

This process amplifies the DNA and adds the UDI (Unique Dual Index) adapters and sequences required for cluster generation. The UDI adapters tag DNA with a unique combination of sequences that identify each sample for analysis.

Consumables

- PCR2 (PCR2 Reaction Mix)
- UDI (Unique Dual Index) plate (UDI0001–UDI0096)
- Microseal 'A' film
- Optional: Microseal 'B' film
- Opentrons 200 µL filter tips
- Opentrons 20 µL filter tips
- Thermo Scientific Abgene 0.8 mL reagent midi plates
- Trash bags

About reagents

- Pipette PCR2 buffer slowly to prevent bubbles.
- Each well of the UDI plate is single-use.
- The row and column labels are only visible from the underside of the UDI plate. Raise the plate overhead to check the labels prior to putting the plate onto the PrepStation dock.

Preparation

1. Prepare the following consumables:

ltem	Storage temperature (°C)	Instructions
UDI plate	-25 to -15	Thaw at room temperature, place on a plate shaker to mix, and then centrifuge for 30 s at 100 \times g.
PCR2	-25 to -15	Thaw at room temperature for 20 min, and then invert to mix.

- 2. Save the following Imagen PCR2 program on the thermal cycler:
 - Choose the preheat lid option and set to 100°C.
 - 98°C for 30 s
 - 15 cycles of:
 - $^\circ$ 98°C for 20 s
 - ° 66°C for 120 s
 - 68°C for 10 min
 - Hold at 10°C

Total program time is approximately 46 min. (The duration for the amplification will depend on the thermal cycler used.)

- 3. Remove the clear plastic lid (do not remove the foil seal cover) from the UDI plate and discard appropriately.
- 4. Centrifuge for 30 s at $100 \times g$.
- 5. Label a new midi plate as "Reagent Midi Plate". This plate will be used by the PrepStation.
- 6. Prepare the Reagent Midi Plate by aliquoting reagents into wells as specified in Table 2 and Table 3. (Blank columns indicate wells that should be left empty).

Note: Observe the following practices:

- While aliquoting reagents into the midi plate, ensure that reagents settle to the bottom of the wells.
- Reagent volumes must correspond to the number of reactions that will be processed in the run. (See Table 3.)
- You may optionally seal the unused wells (Columns 1 to 11) to keep them clean for use in future steps. (Use Microseal 'B' to seal.)

	1	2	3	4	5	6	7	8	9	10	11	12
А												PCR2 Reaction Mix
В												PCR2 Reaction Mix
С												PCR2 Reaction Mix
D												PCR2 Reaction Mix
Е												PCR2 Reaction Mix
F												PCR2 Reaction Mix
G												PCR2 Reaction Mix
Н												PCR2 Reaction Mix

Table 2. Reagent midi plate layout, Post 1 - Enrichment

Reagent	Midi plate column	No. of reactions	Volume per well (µL)
PCR2 Reaction Mix	Column 12	8	35
		16	70
		24	105
		32	140
		40	175
		48	210

Procedure

- 1. Centrifuge the sealed FSP for 30 s at $100 \times g$.
- 2. Create a Verogen protocol set using the PrepStation application:
 - a. Launch the PrepStation application.
 - b. Select Add Protocol Set.
 - c. Choose the appropriate Assay, either ForenSeq Imagen (for use with primer mix DPME) or Forensic Imagen Geo (for use with primer mix DPMF). Then select the Sample Count and UDI Start Position (listed as column numbers).
 - Select Add Protocol Set after choosing the Assay, Sample Count, and UDI Start Position.
 - e. After a few seconds, navigate back to the Protocol Sets screen by selecting the green arrow at the top left. The new protocol set will now appear on the Protocol Sets screen.
- 3. Run the Post 1 Enrichment protocol on the PrepStation instrument:

- a. Launch the Opentrons application.
- Select Protocols from the lefthand menu. Your new protocols will appear under All Protocols.
- c. Select the appropriate protocol to enrich targets. (The name of the protocol will include "Post 1 – Enrichment".) A screen with details about the protocol appears.
 - i. It may be necessary to select **Reanalyze protocol** in the top right corner if there appears to be a "Protocol analysis failure".
- d. Select **Run Protocol**. A sidebar listing available PrepStation instruments appears.
- e. Select the instrument you want to use, then select **Proceed to setup**. A screen with further setup instructions appears.
- f. Select the + button next to Labware Setup. A dropdown window displaying the deck map for this protocol opens.

Note: If a window appears prompting you to apply stored labware offset data, select **Apply stored data**.

- g. If the trash bin is not already empty, empty it and replace the bag.
- h. Load reagents and other labware onto the deck as shown in the deck map (also shown in Figure 3).

Note: Carefully observe the following while loading labware:

- Load labware from back to front. (Load deck slot 9, then 6, then 3.)
- Ensure that labware are oriented such that labels are facing you.
- Ensure that all labware are seated securely inside their deck slots, and not resting on any dividers between deck slots.

- Place the UDI plate on top of the magnetic module and secure it by screwing in the small clamp.
- Ensure that the seal remains on the UDI plate. (The instrument will pierce the foil.)
- Ensure that lids have been removed from the tip racks.

Figure 3. Deck map for Post 1 - Enrichment protocol.

i. When you have finished loading labware, select **Run Labware Position Check**.

The application will guide you through a workflow to verify that all labware is correctly placed.

Important: Carefully observe the following while performing the labware position check:

- During this workflow, you may select **Reveal Jog Controls** to create offsets that adjust how the instrument moves to each labware in the X, Y, and Z directions.
- You can create offsets along any axis for tip racks, but **do not adjust the Z-axis** (**Up and Down**) for other labware.

- Each pipette **arm** should be adjusted vertically (Z-axis) to be as level as possible, and horizontally (X- and Y-axes) to be as close as possible to the center of each tip when viewed from the front or side.
- Each pipette **tip** should be adjusted horizontally (X- and Y-axes) to be as close as possible to the center of each well when viewed from the front or side.
- j. When you have completed the labware position check, select **Proceed to Run**.
- k. Select Start Run. The instrument begins to perform the protocol.
- 4. Once the run has completed, seal the FSP using Microseal 'A'. Centrifuge the sealed plate for 30 s at $100 \times g$.
- 5. Place the FSP on the preprogrammed thermal cycler and run the PCR2 program.
- 6. Clean the PrepStation instrument:
 - a. Remove all labware from the deck.
 - b. Dispose of consumed labware.
 - c. Empty the trash bin and replace the bag.
 - d. To make sure the deck is clean and free of spills, clean any exposed surfaces on the deck using 70% ethanol and let them dry.

Table 4. UDI plate layout

	1	2	3	4	5	6	7	8	9	10	11	12
A	UDI00	UDI00-	UDI00	UDI00	UDI00	UDI00	UDI00	UDI00	UDI00	UDI00	UDI00	UDI00
	01	02	03	04	05	06	07	08	09	10	11	12
В	UDI00	UDI00-	UDI00	UDI00	UDI00	UDI00	UDI00	UDI00	UDI00	UDI00	UDI00	UDI00
	13	14	1 <i>5</i>	16	1 <i>7</i>	18	19	20	21	22	23	24
С	UDI00	UDI00-	UDI00	UDI00	UDI00	UDI00	UDI00	UDI00	UDI00	UDI00	UDI00	UDI00
	25	26	27	28	29	30	31	32	33	34	35	36
D	UDI00	UDI00-	UDI00	UDI00	UDI00	UDI00	UDI00	UDI00	UDI00	UDI00	UDI00	UDI00
	37	38	39	40	41	42	43	44	45	46	47	48
E	UDI00	UDI00-	UDI00	UDI00	UDI00	UDI00	UDI00	UDI00	UDI00	UDI00	UDI00	UDI00
	49	50	51	52	53	54	55	56	57	58	59	60
F	UDI00	UDI00-	UDI00	UDI00	UDI00	UDI00	UDI00	UDI00	UDI00	UDI00	UDI00	UDI00
	61	62	63	64	65	66	67	68	69	70	71	72
G	UDI00	UDI00-	UDI00	UDI00	UDI00	UDI00	UDI00	UDI00	UDI00	UDI00	UDI00	UDI00
	73	74	75	76	77	78	79	80	81	82	83	84
Н	UDI00	UDI00-	UDI00	UDI00	UDI00	UDI00	UDI00	UDI00	UDI00	UDI00	UDI00	UDI00
	85	86	87	88	89	90	91	92	93	94	95	96

Safe stopping point

If you are stopping, seal the plate and store at $2-8^{\circ}$ C for up to 7 days. Alternatively, leave on the thermal cycler overnight.

Note: When processing fewer than 96 libraries, reseal only the utilized or pierced UDI plate wells with Microseal 'B'. Do not seal unpierced or unused UDI wells as this will impact the integrity of the single-use pierceable foil. The remaining UDIs can be utilized with subsequent library preparations.

Protocol step 3: Purify libraries (Post 2 - Purification)

This process combines purification beads with an enzyme to purify the amplified libraries from other reaction components.

Consumables

- RSB (Resuspension Buffer)
- SPB2 (Sample Purification Beads 2)
- Freshly prepared 80% ethanol (EtOH)
- 96-well midi plate
- 96-well PCR plate, skirted or semiskirted
- PVC reagent reservoir
- Microseal 'B' film
- Opentrons 200 µL filter tips
- Opentrons 20 µL filter tips
- Thermo Scientific Abgene 0.8 mL reagent midi plates
- Trash bags

Preparation

1. Prepare the following consumables:

ltem	Storage temperature (°C)	Instructions
RSB	2–8	Let stand for 30 min to bring to room temperature. Vortex and invert to mix.
SPB2	2–8	Let stand for 30 min to bring to room temperature. Vortex for ≥1 min and invert to mix.

2. Label plates as follows.

Plate type	Label
Midi	PBP for Purification Bead Plate
PCR	PLP for Purified Library Plate

3. Prepare the reagent midi plate by aliquoting additional reagents into wells as specified in Table 5 and Table 6. (Blank columns indicate wells that should be left empty. Shaded columns indicate wells with reagents from an earlier protocol step.)

Note: Observe the following practices:

- While aliquoting reagents into the midi plate, ensure that reagents settle to the bottom of the wells.
- Reagent volumes must correspond to the number of reactions that will be processed in the run. (See Table 6.)
- You may optionally seal the unused wells (Columns 1 to 4) to keep them clean for use in future steps. (Use Microseal 'B' to seal.)

	1	2	3	4	5	6	7	8	9	10	11	12
A	-	-	-	-	RSB	SPB2	-	EtOH	EtOH	EtOH	EtOH	PCR2 Reaction Mix
В	-	-	-	-	RSB	SPB2	-	EtOH	EtOH	EtOH	EtOH	PCR2 Reaction Mix
С	-	-	_	-	RSB	SPB2	-	EtOH	EtOH	EtOH	EtOH	PCR2 Reaction Mix
D	-	-	-	-	RSB	SPB2	-	EtOH	EtOH	EtOH	EtOH	PCR2 Reaction Mix
E	-	-	_	-	RSB	SPB2	-	EtOH	EtOH	EtOH	EtOH	PCR2 Reaction Mix
F	-	-	-	-	RSB	SPB2	-	EtOH	EtOH	EtOH	EtOH	PCR2 Reaction Mix
G	-	-	-	-	RSB	SPB2	-	EtOH	EtOH	EtOH	EtOH	PCR2 Reaction Mix
Н	-	-	-	-	RSB	SPB2	-	EtOH	EtOH	EtOH	EtOH	PCR2 Reaction Mix

Table 5. Reagent midi plate layout, Post 2 - Purification

Table 6.	Reagent v	volumes,	Post 2	Purification
----------	-----------	----------	--------	--------------

Reagent	Midi plate column	No. of reactions	Volume per well (µL)
RSB	Column 5	8	70
		16	140
		24	210
		32	280
		40	350
		48	420
SPB2	Column 6	8	54
		16	108
		24	162
		32	216
		40	270
		48	325
80% EtOH*	Columns 8, 10	8	300
		16	500
		24	650
	Columns (8, 10) and (9, 11)	32	650 and 300
		40	650 and 500
		48	650 and 650

* If you are processing 24 reactions or fewer, leave columns 9 and 11 empty.

Procedure

- 1. Centrifuge the sealed FSP for 30 s at $100 \times g$.
- 2. Run the Post 2 Purification protocol on the PrepStation instrument:
 - a. Launch the Opentrons application.
 - b. Select **Protocols** from the left-hand menu.
 - c. Select the appropriate protocol to purify libraries. (The name of the protocol will include "Post 2 Purification".) A screen with details about the protocol appears.
 - d. Select Run Protocol. A sidebar listing available PrepStation instruments appears.
 - e. Select the instrument you want to use, then select **Proceed to setup**. A screen with further setup instructions appears.
 - f. Select the + button next to Module Setup. A drop-down window displaying the deck map for this protocol opens.
 - g. Place the magnetic module as shown in the deck map. Ensure the module is plugged in and connected to the PrepStation USB port.

Note: When the module is on and connected, a green checkmark with "Connected" will appear in the deck map.

h. Select the + button next to Labware Setup or select **Proceed to labware setup**. A dropdown window displaying the deck map for this protocol opens.

Note: If a window appears prompting you to apply stored labware offset data, select **Apply stored data**.

- i. If the trash bin is not already empty, empty it and replace the bag.
- j. Load reagents and other labware onto the deck as shown in the deck map (also shown in Figure 5).

Note: Carefully observe the following while loading labware:

- Load labware from back to front. (Load deck slot 10, then 7, then 4, then 1.)
- Ensure that labware are oriented such that labels are facing you.
- Ensure that all labware are seated securely inside their deck slots, and not resting on any dividers between deck slots.
- Place the PBP plate on top of the magnetic module (be careful to avoid placing it on any of the small corner ridges) and secure it by screwing in the large clamp.
- Ensure that lids have been removed from the tip racks.

Figure 4. Deck map for Post 2 - Purification protocol.

Note: The deck map in the application may show more tip racks than you may need, depending on the number of reactions you are processing. See Table 7 to identify which tip racks are necessary.

No. of reactions	Deck slots requiring 200 µL filtered tip racks
8	1
16	1, 4
24	1, 4, 7
32	1, 4, 7
40	1, 4, 7, 10
48	1, 4, 7, 10, 8

Table 7. Tip racks required for Post 2 - Purification

k. When you have finished loading labware, select **Run Labware Position Check**. The application will guide you through a workflow to verify that all labware is correctly placed.

Important: Carefully observe the following while performing the labware position check:

- During this workflow, you may select **Reveal Jog Controls** to create offsets that adjust how the instrument moves to each labware in the X, Y, and Z directions.
- You can create offsets along any axis for tip racks, but do not adjust the Z-axis (Up and Down) for other labware.
- Each pipette arm should be adjusted vertically (Z-axis) to be as level as possible, and horizontally (X- and Y-axes) to be as close as possible to the center of each tip when viewed from the front or side.

• Each pipette tip should be adjusted horizontally (X- and Y-axes) to be as close as possible to the center of each well when viewed from the front or side.

Note: If you applied labware offsets during a previous protocol run, a window appears showing that offset data. You may select **Apply stored data** to apply the same offsets to the current run. (Whether you select this option or not, QIAGEN recommends that you still calibrate the offsets as described above.)

- I. When you have completed the labware position check, select Proceed to Run.
- m. Select Start Run. The instrument begins to perform the protocol.
- 3. Once the run has completed, seal the PLP using Microseal 'B'. Centrifuge the sealed plate for 30 s at $100 \times g$.
- 4. Clean the PrepStation instrument:
 - a. Remove all labware from the deck.
 - b. Dispose of consumed labware.
 - c. Empty the trash bin and replace the bag.
 - d. To make sure the deck is clean and free of spills, clean any exposed surfaces on the deck using 70% ethanol and let them dry.

Safe stopping point

If you are stopping, seal the plate and store at -25° C to -15° C for up to 1 year.

Protocol step 4: Normalize libraries (Post 3 - Normalization)

This process normalizes the concentration of each library for even representation without post-PCR quantification and individual normalization. Samples of varying types and input amounts achieve consistent cluster density, optimizing the resolution of each library in the pool.

Consumables

- HP3 (2 N NaOH)
- LNA1 (Library Normalization Additives 1)
- LNB1 (Library Normalization Beads 1)
- LNS2 (Library Normalization Storage Buffer 2)
- LNW1 (Library Normalization Wash 1)
- Nuclease-free water
- Two each of either of the following tubes:
 - 1.5 mL microcentrifuge tube
 - 15 mL conical tube
- 96-well midi plate
- 96-well PCR plate, skirted or semiskirted
- PVC reagent reservoir
- Microseal 'B' film
- Opentrons 200 µL filter tips
- Opentrons 20 µL filter tips
- Thermo Scientific Abgene 0.8 mL reagent midi plates
- Trash bags

About reagents

The volumes combined in the LNA1/LNB1 Master Mix tube and the 0.1 N HP3 tube include overage, so calculating additional overage is not necessary.

Important: This set of reagents contains potentially hazardous chemicals. Personal injury can occur through inhalation, ingestion, skin contact, and eye contact. Wear protective equipment, including eye protection, gloves, and laboratory coat appropriate for risk of exposure. Handle used reagents as chemical waste and discard in accordance with applicable regional, national, and local laws and regulations. For more information, please consult the appropriate safety data sheets (SDSs). These are available online in convenient and compact PDF format at www.qiagen.com/safety where you can find, view, and print the SDS for each QIAGEN kit and kit component.

Preparation

1. Prepare the following consumab	les:
-----------------------------------	------

ltem	Storage tem- perature (°C)	Instructions
HP3	-25 to -15	Thaw at room temperature for $\geq\!30$ min. Vortex to mix, and then centrifuge briefly.
LNA1	-25 to -15	Thaw at room temperature for ${\geq}30$ min. Vortex with intermittent inversion
lnb1	2–8	Let stand for 30 min to equilibrate to room temperature. Vortex for at least 1 min, inverting 5 times every 15 s. Pipette to mix until the bead pellet at the bottom is resuspended.
LNW1	2–8	Let stand for 30 min to equilibrate to room temperature.
LNS2	15-30	Remove from storage.

2. Label vessels as follows.

Vessel	Label
1.5 mL tube or 15 mL conical tube	0.1 N HP3
1.5 mL tube or 15 mL conical tube	LNA1/LNB1 Master Mix
Midi plate	NWP for Normalization Working Plate
PCR plate	NLP for Normalization Library Plate

- 3. Prepare a hazardous waste disposal container for all waste generated in the normalization step.
- 4. In the LNA1/LNB1 Master Mix tube, combine volumes of reagents as specified in Table 8 below. Do not add overage.

	Volume to add (µL)	
No. of reactions	LNA1	LNB1
8	379	69
16	758	138
24	1138	208
32	1517	275
40	1896	344
48	2275	413

Table 8. LNA1/LNB1 Master Mix

- 5. Vortex, and then invert several times to mix.
- 6. In the 0.1 N HP3 tube, combine volumes of reagents as specified in Table 9 on the next page. Do not add overage.

Table 9. LNA1/LNB1 Master Mix

	Volume to add (µL)					
No. of reactions	Nuclease-free water	НРЗ				
8	381	21				
16	762	42				
24	1142	62				
32	1523	83				
40	1904	104				
48	2285	125				

- 7. Invert several times to mix, and then set aside.
- 8. Prepare the reagent midi plate by aliquoting additional reagents into wells as specified in Figure 5 and Table 10. (Blank columns indicate wells that should be left empty. Shaded columns indicate wells with reagents from an earlier protocol step.)

Note: Observe the following practices:

- While aliquoting reagents into the midi plate, ensure that reagents settle to the bottom of the wells.
- Reagent volumes must correspond to the number of reactions that will be processed in the run.

	1	2	3	4	5	6	7	8	9	10	11	12
A	LNS2	0.1 N HP3	LNW1	lna1/ln B1	RSB	SPB2	-	EłOH	EIOH	EłOH	EIOH	PCR2 Reaction Mix
в	LNS2	0.1 N HP3	LNW1	lna1/ln B1	RSB	SPB2	I	EŧOH	EtOH	EŧOH	EtOH	PCR2 Reaction Mix
с	LNS2	0.1 N HP3	LNW1	lna1/ln B1	RSB	SPB2	-	EłOH	EIOH	EłOH	EIOH	PCR2 Reaction Mix
D	LNS2	0.1 N HP3	LNW1	lna1/ln B1	RSB	SPB2	-	EłOH	EłOH	EłOH	EtOH	PCR2 Reaction Mix
E	LNS2	0.1 N HP3	LNW1	LNA1/LN B1	RSB	SPB2	-	EłOH	EłOH	EłOH	EłOH	PCR2 Reaction Mix
F	LNS2	0.1 N HP3	LNW1	lna1/ln B1	RSB	SPB2	-	EłOH	EIOH	EłOH	EIOH	PCR2 Reaction Mix
G	LNS2	0.1 N HP3	LNW1	LNA1/LN B1	RSB	SPB2	-	EtOH	EtOH	EłOH	EtOH	PCR2 Reaction Mix
н	LNS2	0.1 N HP3	LNW1	LNA1/LN B1	RSB	SPB2	-	EłOH	EIOH	EłOH	EIOH	PCR2 Reaction Mix

Figure 5. Reagent midi plate layout, Post 3 – Normalization.

Table 10. Reagent volumes, Post 3 – Normalization

Reagent	Midi plate column	No. of reactions	Volume per well (µL)
LNS2	Column 1	8	36
		16	72
		24	108
		32	144
		40	180
		48	216

Reagent	Midi plate column	No. of reactions	Volume per well (µL)
0.1 N HP3	Column 2	8	40
		16	80
		24	120
		32	160
		40	200
		48	240
LNW1	Column 3	8	100
		16	200
		24	300
		32	400
		40	500
		48	600
LNA1/LNB1 Master Mix	Column 4	8	56
		16	112
		24	168
		32	224
		40	280
		48	336

Table 10. Reagent volumes, Post 3 - Normalization (continued)

Procedure

- 1. Run the Post 3 Normalization protocol on the PrepStation instrument:
 - a. Launch the Opentrons application.
 - b. Select **Protocols** from the lefthand menu.
 - c. Select the appropriate protocol to normalize libraries. (The name of the protocol will include "Post 3 Normalization".) A screen with details about the protocol appears.
 - d. Select **Run Protocol**. A sidebar listing available PrepStation instruments appears.
 - e. Select the instrument you want to use, then select **Proceed to setup**. A screen with further setup instructions appears.
 - f. Select the + button next to Module Setup. A drop-down window displaying the deck map for this protocol opens.
 - g. Place the magnetic module as shown in the deck map. Ensure the module is plugged in and connected to the PrepStation USB port.

Note: When the module is on and connected, a green checkmark with "Connected" will appear in the deck map.

h. Select the + button next to Labware Setup, or select Proceed to labware setup. A dropdown window displaying the deck map for this protocol opens.

Note: If a window appears prompting you to apply stored labware offset data, select **Apply stored data**.

i. Load reagents and other labware onto the deck as shown in the deck map (also shown in Figure 6).

Note: Carefully observe the following while loading labware:

- Load labware from back to front. (Load deck slot 10, then 7, then 4, then 1.)
- Ensure that labware are oriented such that labels are facing you.
- Ensure that all labware are seated securely inside their deck slots, and not resting on any dividers between deck slots.
- Place the NWP plate on top of the magnetic module and secure it by screwing in the large clamp.
- Ensure that lids have been removed from the tip racks.

Figure 6. Deck map for Post 3 - Normalization protocol.

Note: The deck map in the application may show more filtered tip racks than you may need, depending on the number of reactions you are processing. See Table 11 to identify which tip racks are necessary.

No. of reactions	Deck slots requiring 200 µL filtered tip racks
8	1
16	1, 4
24	1, 4, 7
32	1, 4, 7, 10
40	1, 4, 7, 10, 8
48	1, 4, 7, 10, 8, 9

Table 11. Tip racks required for Post 3 - Normalization

 When you have finished loading labware, select **Run Labware Position Check**. The application will guide you through a workflow to verify that all labware is correctly placed.

Important: Carefully observe the following while performing the labware position check:

- During this workflow, you may select **Reveal Jog Controls** to create offsets that adjust how the instrument moves to each labware in the X, Y, and Z directions.
- You can create offsets along any axis for tip racks, but do not adjust the Z-axis (Up and Down) for other labware.
- Each pipette arm should be adjusted vertically (Z-axis) to be as level as possible, and horizontally (X and Y-axes) to be as close as possible to the center of each tip when viewed from the front or side.
- Each pipette tip should be adjusted horizontally (X- and Y-axes) to be as close as possible to the center of each well when viewed from the front or side.

Note: If you applied labware offsets during a previous protocol run, a window appears showing that offset data. You may select **Apply stored data** to apply the

same offsets to the current run; if you do, QIAGEN recommends that you still calibrate the offsets as described above.

- k. When you have completed the labware position check, select Proceed to Run.
- I. If it is not already empty, empty the trash bin and replace the bag.
- m. Select Start Run. The instrument begins to perform the protocol.
- 2. Once the run has completed, seal the NLP. Centrifuge the sealed plate for 30 s at $100 \times g$.
- 3. Clean the PrepStation instrument:
 - a. Remove all labware from the deck.
 - b. Dispose of consumed labware in the appropriate hazardous waste receptacles.
 - c. Empty the trash bin and replace the bag.
 - d. To make sure the deck is clean and free of spills, clean any exposed surfaces on the deck using 70% ethanol and let them dry.

Safe stopping point

If you are stopping, seal the plate and store at -25° C to -15° C for up to 30 days.

Protocol step 5: Pool libraries (Post 4 - Pooling)

This process combines equal volumes of each normalized library to create a pool of libraries that are sequenced together on the same flow cell.

Consumables

- 1.5 mL LoBind microcentrifuge tube
- RNase/DNase-free 8-tube strip and caps
- Microseal 'B' film
- Opentrons 200 µL filter tips
- Opentrons 20 µL

Preparation

- Select libraries to pool for sequencing. For recommendations, see "Number of samples" on page 15.
- 2. Label vessels as follows:

Vessel	Label
1.5 mL tube	PNL for Pooled Normalized Libraries
PCR plate	Pooling Plate

Procedure

- 1. Centrifuge the sealed NLP for 30 s at $100 \times g$.
- 2. Run the "Post 4 Pooling protocol" on the PrepStation instrument:

- a. Launch the Opentrons application.
- b. Select **Protocols** from the lefthand menu.
- c. Select the appropriate protocol to pool libraries. (The name of the protocol will include "Post 4 Pooling".) A screen with details about the protocol appears.
- d. Select **Run Protocol**. A sidebar listing available PrepStation instruments appears.
- e. Select the instrument you want to use, then select **Proceed to setup**. A screen with further setup instructions appears.
- f. Select the + button next to Labware Setup, or select **Proceed to labware setup**. A dropdown window displaying the deck map for this protocol opens.

Note: If a window appears prompting you to apply stored labware offset data, select **Apply stored data**.

g. Load labware onto the deck as shown in the deck map (also shown in Figure 7).

Note: Carefully observe the following while loading labware:

- Load labware from back to front. (Load deck slot 8, then 5, then 1.)
- Ensure that labware are oriented such that labels are facing you.
- Ensure that all labware are seated securely inside their deck slots, and not resting on any dividers between deck slots.
- Ensure that lids have been removed from the tip rack.

Figure 7. Deck map for Post 4 - Pooling protocol.

h. When you have finished loading labware, select **Run Labware Position Check**. The application will guide you through a workflow to verify that all labware is correctly placed.

Important: Carefully observe the following while performing the labware position check:

- During this workflow, you may select **Reveal Jog Controls** to create offsets that adjust how the instrument moves to each labware in the X, Y, and Z directions.
- You can create offsets along any axis for tip racks, but do not adjust the Z-axis (Up and Down) for other labware.
- Each pipette arm should be adjusted vertically (Z-axis) to be as level as possible, and horizontally (X and Y-axes) to be as close as possible to the center of each tip when viewed from the front or side.
- Each pipette tip should be adjusted horizontally (X- and Y-axes) to be as close as possible to the center of each well when viewed from the front or side.

Note: If you applied labware offsets during a previous protocol run, a window appears showing that offset data. You may select **Apply stored data** to apply the same offsets to the current run; if you do, QIAGEN recommends that you still calibrate the offsets as described above.

- i. When you have completed the labware position check, select **Proceed to Run**.
- j. If it is not already empty, empty the trash bin and replace the bag.
- k. Select Start Run. The instrument begins to perform the protocol.
- 3. Once the run has completed, seal the NLP. Centrifuge the sealed plate for 30 s at $100 \times g$.
- 4. Transfer libraries from each well of the 8-tube strip to the PNL tube.
- 5. Cap and vortex to mix, and then centrifuge briefly.
- 6. Clean the PrepStation instrument:
 - a. Remove all labware from the deck.
 - b. Dispose of consumed labware in the appropriate hazardous waste receptacles.
 - c. Empty the trash bin and replace the bag.
 - d. To make sure the deck is clean and free of spills, clean any exposed surfaces on the deck using 70% ethanol and let them dry.

Safe stopping point

If you are stopping, cap the tube and store at -25° C to -15° C for up to 30 days.

Removing Verogen Protocol Set from Opentrons

To complete the PrepStation component of the library prep protocol, remove the Verogen protocol set from the Opentrons application as follows:

- 1. Launch the PrepStation application.
- 2. Select the protocol set you want to remove from the Opentrons application.
- 3. Select Remove Protocol Set.

The protocol set is removed from the Opentrons application. (If you still see the protocol set in the Opentrons application, refresh the Protocols page by navigating to another page and back, or by relaunching the application.)

Protocol step 6: Denature and dilute libraries

This process dilutes libraries to the loading concentration, adds a sequencing control, and uses a heat-based method to denature the libraries for sequencing.

Start this process when you are ready to prepare sequencing reagents and set up the run. Delays can impact template loading.

Consumables

- HP3 (2 N NaOH)
- HSC (Human Sequencing Control)
- MiSeq FGx Reagent Kit contents:
 - HT1 (Hybridization Buffer)
 - Reagent cartridge
- Nuclease-free water
- 1.5 mL microcentrifuge tubes (2)

Preparation

1. Prepare the following consumables:

ltem	Storage temperature (°C)	Instructions
HP3	-25 to -15	Thaw at room temperature for ${\geq}30$ min, and then centrifuge briefly.
HSC	-25 to -15	Let stand for 30 min to bring to room temperature. Invert to mix, and then centrifuge.
HT1	-25 to -15	Thaw at room temperature, and then vortex to mix.
Reagent cartridge	-25 to -15	Thaw in a water bath at room temperature.

- 2. Preheat the microheating system to 96°C.
- 3. Label 2 new 1.5 mL tubes:
 - Denatured HSC
 - DNL for Denatured Normalized Libraries

Procedure

1. In the Denatured HSC tube, combine the following volumes.

Important: Strictly follow the order of adding the reagents.

- HSC (2 µL)
- HP3 (2 µL)
- Nuclease-free water (36 µL)
- 2. Pipette gently to mix. Cap and centrifuge briefly to mix.
- 3. Incubate at room temperature for 5 min.

- 4. Add 600 μL HT1 to the DNL tube.
- 5. Place the PNL tube in the preheated microheating system and incubate for 2 min.
- 6. Immediately transfer an appropriate volume of libraries from the PNL tube to the DNL tube. Refer to Table 12.

No. of libraries	PrepStation library volume (µL)	Manual library volume (µL)	Total library volume (µL)
96 PrepStation, 0 manual	12	n/a	12
48 PrepStation, 48 manual	5	4	9
O PrepStation, 96 manual*	n/a	8	8

Table 12. Library volumes

* This row is included for comparison only.

- 7. Pipette to mix.
- Cap the PNL tube and store at -25°C to -15°C for ≤30 days. Exceeding 30 days significantly reduces cluster density.
- 9. Add 4 μL denatured HSC to the DNL tube. You can store the denatured HSC at room temperature for ≤ 1 day.
- 10. Pipette to mix.
- 11. Cap and vortex to mix, and then centrifuge briefly.
- 12. Immediately transfer the entire volume to the reagent cartridge per instructions in the MiSeq FGx Sequencing System Reference Guide (document # VD2018006).

Technical Support

For more information, see also the Frequently Asked Questions page at our Technical Support Center: www.qiagen.com/FAQ/FAQList.aspx. The scientists in QIAGEN Technical Services are always happy to answer any questions you may have about either the information and/or protocols in this handbook or sample and assay technologies (for contact information, visit www.qiagen.com).

Ordering Information

Product	Contents	Cat. no.			
ForenSeq Imagen Kit (96)	Prepares up to 96 paired-end, dual-indexed libraries for sequencing and analysis of phenotypic and biogeo- graphical ancestry information.	V16000189			
Related product					
MiSeq FGx Micro Reagent Kit	Supports up to 5 million paired-end reads for deep sequencing or high-throughput sample processing	15066817			

For up-to-date licensing information and product-specific disclaimers, see the respective QIAGEN kit handbook or user manual. QIAGEN kit handbooks and user manuals are available at **www.qiagen.com** or can be requested from QIAGEN Technical Services or your local distributor.

Document Revision History

Date

Changes

09/2024

Initial release

Limited License Agreement for ForenSeq Imagen Kit

Use of this product signifies the agreement of any purchaser or user of the product to the following terms:

- 1. The product may be used solely in accordance with the protocols provided with the product and this Instructions for Use and for use with components contained in the panel only. QIAGEN grants no license under any of its intellectual property to use or incorporate the enclosed components of this panel with any components not included within this panel except as described in the protocols provided with the product, this Instructions for Use, and additional protocols available at www.qiagen.com. Some of these additional protocols have been provided by QIAGEN users for QIAGEN users. These protocols have not been thoroughly tested or optimized by QIAGEN. QIAGEN neither guarantees them nor warrants that they do not infringe the rights of third-parties.
- Other than expressly stated licenses, QIAGEN makes no warranty that this panel and/or its use(s) do not infringe the rights of third-parties.
- 3. This panel and its components are licensed for one-time use and may not be reused, refurbished, or resold.
- 4. QIAGEN specifically disclaims any other licenses, expressed or implied other than those expressly stated.
- 5. The purchaser and user of the panel agree not to take or permit anyone else to take any steps that could lead to or facilitate any acts prohibited above. QIAGEN may enforce the prohibitions of this Limited License Agreement in any Court, and shall recover all its investigative and Court costs, including attorney fees, in any action to enforce this Limited License Agreement or any of its intellectual property rights relating to the panel and/or its components.

For updated license terms, see **www.qiagen.com**.

Trademarks: QIAGEN®, Sample to Insight®, QIAamplifier®, ForenSeq®, MiSeq FGx® (QIAGEN Group); QuantiFluor®, Quantus™ (Promega); AccuClear® (Biotium); PicoGreen™, Qubit™ (Thermo Fisher Scientific). Registered names, trademarks, etc. used in this document, even when not specifically marked as such, are not to be considered unprotected by law.

09/2024 HB-3614-001 © 2024 QIAGEN, all rights reserved.

Ordering www.qiagen.com/shop | Technical Support support.qiagen.com | Website www.qiagen.com