qBiomarker Somatic Mutation PCR Arrays

体細胞DNA変異の状態を迅速かつ正確にプロファイリングできる遺伝子パネル

S_1084_5_GEN_V2
GeneGlobeで探索・設定する
適切なターゲット特異的アッセイおよびパネルを探すか、またはターゲットをカスタムデザインし、お客様のご興味のある生物学的ターゲット評価にお使いください。

qBiomarker Somatic Mutation PCR Arrays

Cat. No. / ID:   337021

PCR plate and master mix
GeneGlobeで探索・設定する 価格を確認するには
qBiomarker Somatic Mutation PCR Arraysは分子生物学的アプリケーション用であり、疾病の診断、予防、あるいは治療に使用することはできません。
GeneGlobeで探索・設定する
適切なターゲット特異的アッセイおよびパネルを探すか、またはターゲットをカスタムデザインし、お客様のご興味のある生物学的ターゲット評価にお使いください。

特徴

  • パスウェイあるいは疾病に特異的な遺伝子体細胞変異状態のプロファイリング
  • 簡単なリアルタイムPCR操作
  • 高い感度と幅広いダイナミックレンジ
  • ほとんどのリアルタイムPCR装置でルーチン使用が可能
  • マスターミックス付属

製品詳細

qBiomarker Somatic Mutation PCR Arrayは翻訳研究ツールで、生物学的パスウェイあるいは疾病に関連する重要な遺伝子の体細胞変異状態のプロファイリングを迅速かつ正確に行ないます。変異は、臨床または機能的関連性および出現頻度に基づいて、広範な体細胞突然変異のデータベース(例;COSMIC)と査読済み科学文献から選択されています。

パフォーマンス

qBiomarker Somatic Mutation PCR Arrayはホルマリン固定パラフィン包埋(FFPE)組織でも高い感度を示します(図 “ 高い感度” および “ FFPEサンプルを用いた場合のqBiomarker Somatic Mutation PCR Array感度”)。

qBiomarker Somatic Mutation PCR Arrayは、毒性研究、創薬、がん研究において重要となる、細胞株または研究サンプル中の変異検出に有用です(図 “ 一般的ながん細胞株の体細胞突然変異状態のプロファイリング”)。

図参照

原理

リアルタイムPCRはDNA変異検出において感度と信頼性が最も高い方法です。対立遺伝子特異的増幅と加水分解プローブ検出を組み合わせたqBiomarker Somatic Mutation real-time PCR assayは、野生型ゲノムDNAのバックグランドからわずか1%の体細胞突然変異を検出することが可能です。アレルの特異的な増幅は、PCRプライマーの3'末端でのマッチとミスマッチをTaq ポリメラーゼにより判別するAmplification Refractory Mutation System(ARMS)テクノロジーをベースにしています(図“ ARMSテクノロジーの原理”)。
図参照

操作手順

DNAテンプレートと即使用可能なPCRマスターミックスを、同一プレートの各ウェルに等量分注し、リアルタイムPCRサイクリングプリグラムを起動します。 qBiomarker Somatic Mutation PCR ArrayはABI、Bio-Rad、Eppendorf、Roche、Stratagene社の装置で使用可能です。

96ウェルおよび384ウェルプレートでの入手が可能なqBiomarker Somatic Mutation PCR Arrayは、疾病状態やパスウェイに関連する変異検出に加えて、標準化のための遺伝子コピー数コントロール用に使用します。各qBiomarker Somatic Mutation PCR Arrayにはまた、一般的なPCRパフォーマンスをチェックするためのコントロールが含まれています。

使いやすいデータ解析

エクセルベースのデータ解析テンプレートを用いてデータ解析を行なえます。データ解析は∆∆CT 法あるいは平均 ∆CT 法をベースにしています。

アレイは様々なフォーマットでお届けし、すべてマスターミックスが入っています。

qBiomarker Somatic Mutation PCR Array Format A:Fluoroscein, 96-well; for Bio-Rad iCycler, iQ5, MyiQ, and MyiQ2 instruments
qBiomarker Somatic Mutation PCR Array Format A:ROX, 96-well; for ABI Standard 96-well Blocks (5700, 7000, 7300, 7500, 7900HT, ViiA 7); Bio-Rad Chromo 4 (MJ Research); Stratagene Mx3005p, Mx3000p; Eppendorf ep realplex 2/2S, and 4/4S instruments
qBiomarker Somatic Mutation PCR Array Format C:ROX, 96-well; for ABI 7500 FAST 96-well Block, 7900HT FAST 96-Well Block, StepOnePlus, and ViiA 7 FAST 96-well Block instruments
qBiomarker Somatic Mutation PCR Array Format D:ROX, 96-well; for Bio-Rad CFX96, Opticon and Opticon 2 (MJ Research); Stratagene Mx4000 instruments
qBiomarker Somatic Mutation PCR Array Format E:ROX, 384-well; for ABI 7900HT 384-well Block, ViiA 7 384-well Block; Bio-Rad CFX384 instruments
qBiomarker Somatic Mutation PCR Array Format F:ROX, 96-well; for Roche LightCycler 480 96-well Block instruments
qBiomarker Somatic Mutation PCR Array Format G:ROX, 384-well; for Roche LightCycler 480 96-well Block instruments

アプリケーション

qBiomarker Somatic Mutation PCR Arrayは、パスウェイあるいは疾病に特異的な遺伝子セットおよびダウンストリームでシグナル伝達に関与する遺伝子の変異を迅速かつ正確にプロファイリングできます。

裏付けデータと数値

リソース

ダウンロードファイル (1)
Data analysis file for qBiomarker™ Somatic Mutation PCR Array Human DNA QC Pathway- FFPE Samples
Catalog number- 337021
Pathway number- SMH-999
MSDS (1)
Download Safety Data Sheets for QIAGEN product components.
機器テクニカル資料 (2)
For gene expression and genomic analysis
For screening disease-focused mutation panels by PCR
パフォーマンスデータ (3)
キットハンドブック (1)
For real-time PCR-based, pathway- or disease-focused somatic mutation profiling
Safety Data Sheets (1)
Certificates of Analysis (1)
Instrument Technical Documents (2)
For screening disease-focused mutation panels by PCR
For gene expression and genomic analysis
Download Files (1)
Data analysis file for qBiomarker™ Somatic Mutation PCR Array Human DNA QC Pathway- FFPE Samples
Catalog number- 337021
Pathway number- SMH-999
Kit Handbooks (1)
For real-time PCR-based, pathway- or disease-focused somatic mutation profiling

Publications

EGFR mutation testing in lung cancer: a review of available methods and their use for analysis of tumour tissue and cytology samples.
Ellison G; Zhu G; Moulis A; Dearden S; Speake G; McCormack R;
J Clin Pathol; 2012; 66 (2):79-89 2012 Nov 21 PMID:23172555

FAQ

How do I use the qBiomarker Somatic Mutation PCR Arrays?
The simple workflow involves mixing the DNA sample of interest with ready-to-use qBiomarker Probe Master Mix, aliquoting the mixture into the array plate wells, performing real-time PCR, and making mutation/genotype calls using web-based data analysis software or Excel-based templates.
FAQ ID -2923
What PCR machine do I need to use to run such a qBiomarker Somatic Mutation PCR Arrays?

The arrays are designed for routine use on any PCR instruments. Arrays are available in the following formats:

qBiomarker Somatic Mutation PCR Array Format A: Fluoroscein, 96-well; for Bio-Rad iCycler, iQ5, MyiQ, and MyiQ2 instruments

qBiomarker Somatic Mutation PCR Array Format A: ROX, 96-well; for ABI Standard 96-well Blocks (5700, 7000, 7300, 7500, 7900HT, ViiA 7); Bio-Rad Chromo 4 (MJ Research); Stratagene Mx3005p, Mx3000p; Eppendorf ep realplex 2/2S, and 4/4S instruments

qBiomarker Somatic Mutation PCR Array Format C: ROX, 96-well; for ABI 7500 FAST 96-well Block, 7900HT FAST 96-Well Block, StepOnePlus, and ViiA 7 FAST 96-well Block instruments

qBiomarker Somatic Mutation PCR Array Format D: ROX, 96-well; for Bio-Rad CFX96, Opticon and Opticon 2 (MJ Research); Stratagene Mx4000 instruments

qBiomarker Somatic Mutation PCR Array Format E: ROX, 384-well; for ABI 7900HT 384-well Block, ViiA 7 384-well Block; Bio-Rad CFX384 instruments

qBiomarker Somatic Mutation PCR Array Format F: ROX, 96-well; for Roche LightCycler 480 96-well Block instruments

qBiomarker Somatic Mutation PCR Array Format G : ROX, 384-well; for Roche LightCycler 480 96-well Block instruments

qBiomarker Somatic Mutation PCR Array Format R : ROX, 100-well disc; for QIAGEN Rotor-Gene Q/6000 instruments

FAQ ID -2917
What sample types can I test on the qBiomarker Somatic Mutation PCR Arrays?
The somatic mutation detection assays and arrays prove to yield accurate and verifiable results in various sample types, including fresh frozen cell lines and tissue samples, cell line admixtures, FFPE cell line samples and FFPE tissue samples from various sources.
FAQ ID -2919
How much DNA starting sample is needed for analysis with a Somatic Mutations PCR Array? And Assay?
The recommended starting DNA sample for the Somatic Mutation PCR Arrays is 500 ng for a 96-well plate, and 200 ng for a 384-well plate. If using less, please proceed with Whole Genome Amplification (see User Manual for protocol); if using DNA isolated from FFPE samples, 500 ng – 2 ug is recommended for 96-well plates & 200 ng – 1.6 ug is recommended for 384-well plates. For Somatic Mutation Assays, it is recommend to start with 5 – 40 ng.
FAQ ID -2431
How are the different mutations for a single gene normalized on the qBiomarker Somatic Mutation PCR array?
Each qBiomarker mutation assay has it corresponding gene assay on the array, in the form of a Copy Number Assay.
FAQ ID -2428
How can I check DNA sample quality before using the Somatic Mutation PCR Arrays & Assays?
We recommend using the QIAGEN QIAamp DNA Mini Kit for DNA isolation, with the recommended RNase step. For sample quality, we recommend assaying for DNA concentration & purity with a UV Spectrophotometer; for DNA Integrity, an agarose gel should be run; and DNA quality and consistency can be checked on the Somatic Mutations QC plate that measures 7 reference genes by RT-PCR.
FAQ ID -2430
How do you decide on the qBiomarker Somatic Mutation PCR Arrays to include on the pathway arrays and disease arrays?
For pathway-focused arrays, we included assays for detecting the most frequent and functionally verified mutations for multiple genes within a specific pathway implicated in a variety of cancers. Additional assays are also available for each gene to allow array customization. For disease-focused arrays, we selected top somatic mutations for that disease type covering between 4,000 and 40,000 published tumor samples for each disease type.
FAQ ID -2913
What pathways and diseases are currently covered for the qBiomarker Somatic Mutation PCR Arrays?
The pathways covered include major receptor tyrosine kinase pathways, non-receptor kinase pathways, as well as additional oncogene and tumor suppressor pathways; and the targeted diseases include all major cancer types. In addition, a collection of more than 800 pre-validated somatic mutation assays enables researchers to study single mutations or to customize the mutation panels or collections according to their research needs.
FAQ ID -2922
What are the technological principles behind somatic mutation PCR arrays and assays?
Real-time PCR is the most sensitive and reliable method for the detection of DNA mutations. By combining allele specific amplification and hydrolysis probe detection, we have developed real-time PCR assays that detects as low as 1% somatic mutations in the background of wild-type genomic DNA. Allele specific amplification is achieved by Amplification Refractory Mutation System (ARMS@) technology, which is based on the ability of Taq polymerase to discriminate between a match and a mismatch at the 3' end of the PCR primer.
FAQ ID -2924
How many mutations can I profile per sample on the qBiomarker Somatic Mutation PCR Array?
Depending on the qBiomarker Somatic Mutation PCR Array that is chosen, one can profile between 40 and 360 mutations per sample in one PCR run.
FAQ ID -2911
What method(s) do you recommend as an alternative way to validate the mutations identified on the somatic mutation PCR arrays?
Sanger sequencing and pyrosequencing can be used to validate the mutations identified on the arrays. However, one needs to bear in mind that the detection sensitivity of Sanger sequencing is around 20%, and the detection sensitivity of pyrosequencing is around 5%, while RT-PCR based arrays can detect 1% or lower mutations. Therefore, mutations occurring below the detection limit of Sanger sequencing and pyrosequencing will not be verified by these two methods.
FAQ ID -2920
Where are the somatic mutations published?
The content for the Somatic Mutations PCR Array is derived from the COSMIC database, established by the Sanger Institute of the Wellcome Trust. (http://www.sanger.ac.uk/genetics/CGP/cosmic/)
FAQ ID -2429
What is the principle for qBiomarker Somatic Mutation PCR Array data analysis?
The basic principle behind the data analysis is that we compare the Ct value of a mutation assay in a test sample with the Ct value of the same assay in a wildtype sample. When there is a significant difference (a preset value of 4 Cts) between the Ct values, the test sample is concluded to contain the mutation. The Ct values used for comparison can either be raw Ct (in average Ct method) or normalized Ct (in delta delta Ct case). When the Ct difference falls between 3 and 4, we give a borderline mutation call, which means that the mutation may be present at low percentage. When the Ct difference is smaller than 3, we give a negative mutation call (i.e. the mutation percentage is beyond the detection limit of the array). The wildtype sample can be either a genuine wildtype sample that is tested in the same experiment, or it could be a "virtual" wildtype sample that is computed from all test samples. For detailed description of the data analysis principle, refer to (link to white paper).
FAQ ID -2916
What are the control features on the qBiomarker Somatic Mutation PCR Arrays?
Each array contains gene copy reference assays for each gene represented by the array. These assays target non-variable regions of the genes and measure input DNA quality and amount. In addition, these assays sensitively measure gene dosage to normalize mutation assay data against the gene copy number. Each array also contains positive PCR controls (SMPC) to test for the presence of inhibitors in the sample or the efficiency of the polymerase chain reaction itself using a pre-dispensed artificial DNA sequence and the primer set that detects it.
FAQ ID -2914
What are the advantages of RT-PCR based somatic mutation PCR arrays and assays compared to other platforms?
The main advantages are qPCR-based superior detection sensitivity and straightforward data analysis procedure. Additional major advantages over other currently available mutation detection platforms/methods are: (1) The workflow is very simple, involving only one setup step. No multi-step handling is involved, and hands-on time is less than any other method available. (2) Reactions involved are all closed-tube reactions avoiding sample contamination. (3) The DNA sample input is low. (4) The hardware involved in analysis using the mutation detection arrays and assays is highly accessible, enabling such analysis for any laboratory with access to real-time PCR instruments.
FAQ ID -2921
What is the sensitivity of the assays contained on the qBiomarker Somatic Mutation PCR Arrays?
The assays were validated to have at least 1% sensitivity (i.e. able to detect 1% mutation on a wildtype background), but the sensitivity is usually higher. On average, the assay sensitivity is 0.03%.
FAQ ID -2910
How many different genes and gene mutations are on a Somatic Mutation PCR Array?
There are currently 13 different pathway-focused and 10 disease-focused Somatic Mutation PCR Arrays available, with each array assaying from 3 to 19 genes, and on average 5-30 mutations within each gene. Please refer to the individual product sheets/ product webpage for a full listing.
FAQ ID -2427
What effects can be predicted with poor sample quality? How robust is the platform with questionable sample quality (such as FFPE samples)?

Poor quality samples tend to give higher Cts in all assays (mutation assays and gene copy number assays) and there are two possible consequences:

 (1) if using average Ct method for data analysis, even real mutations in poor quality samples will not be called, because the mutation locus Ct will be pushed to a high Ct region; (2) if using delta delta Ct method for data analysis, there will be a number of false positives in low quality samples.

We recommend using the average Ct value for gene copy number assays on the array to gauge the sample quality (or run the sample on a DNA QC plate before running samples on an array). For FFPE samples, we recommend the average Ct to be below 32 to allow sensitive detection of mutations. Samples that meet this criterion perform robustly on the arrays.

FAQ ID -2918
What is the data analysis method, and where can I find it for the qBiomarker Somatic Mutatation PCR arrays?

The choice between one of two data analysis methods depends on the experimental setup and sample type.

1. ΔΔCt Method Recommended for experiments using: Small (four or less) number of fresh, frozen samples Large number of samples with similar DNA quality

2. Average Ct Method Recommended for experiments using: FPPE samples, large number of samples or without wild-type control samples

Data analysis can either be performed on the somatic mutation data analysis web portal or by downloading the Excel data analysis templates at http://www.sabiosciences.com/somaticmutationdataanalysis.php

FAQ ID -2915
Were all assays on the qBiomarker Somatic Mutation PCR Arrays bench-validated?
Each array contains a panel of assays bench-validated for hydrolysis probe based real-time RT-PCR detection. These assays are optimized to work under standard cycling conditions enabling a large number of assays to be analyzed simultaneously.
FAQ ID -2912