Molecular MRD as measured by digital PCR offers key insights into AML biology and therapy response
Adults with acute myeloid leukemia (AML) typically require multi-agent chemotherapy with or without hematopoietic stem cell transplant (HSCT) for a chance at a cure. Pathologic evaluation of disease response has historically provided only a limited predictive value of a patient’s relapse risk and chances of long-term survival. Measurable residual disease (MRD) has emerged as a more sensitive tool for detecting resistant AML and a more accurate predictor of outcomes. Still, currently, clinical MRD based on flow cytometry only detects a subset of patients whose disease will ultimately recur.
MRD based on a patient’s specific AML-associated mutations is predicted to supplement flow cytometry MRD to predict outcomes better. We have utilized digital PCR (dPCR) to detect low-level AML mutations in remission bone marrow samples from AML patients on various therapies. dPCR MRD is predictive of relapse risk and overall survival and allows us to infer patterns in disease evolution in response to therapy.